Targeted disruption of the kstD gene encoding a 3-ketosteroid delta(1)-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1.

نویسندگان

  • R van Der Geize
  • G I Hessels
  • R van Gerwen
  • J W Vrijbloed
  • P van Der Meijden
  • L Dijkhuizen
چکیده

Microbial phytosterol degradation is accompanied by the formation of steroid pathway intermediates, which are potential precursors in the synthesis of bioactive steroids. Degradation of these steroid intermediates is initiated by Delta(1)-dehydrogenation of the steroid ring structure. Characterization of a 2.9-kb DNA fragment of Rhodococcus erythropolis SQ1 revealed an open reading frame (kstD) showing similarity with known 3-ketosteroid Delta(1)-dehydrogenase genes. Heterologous expression of kstD yielded 3-ketosteroid Delta(1)-dehydrogenase (KSTD) activity under the control of the lac promoter in Escherichia coli. Targeted disruption of the kstD gene in R. erythropolis SQ1 was achieved, resulting in loss of more than 99% of the KSTD activity. However, growth on the steroid substrate 4-androstene-3,17-dione or 9alpha-hydroxy-4-androstene-3,17-dione was not abolished by the kstD gene disruption. Bioconversion of phytosterols was also not blocked at the level of Delta(1)-dehydrogenation in the kstD mutant strain, since no accumulation of steroid pathway intermediates was observed. Thus, inactivation of kstD is not sufficient for inactivation of the Delta(1)-dehydrogenase activity. Native polyacrylamide gel electrophoresis of cell extracts stained for KSTD activity showed that R. erythropolis SQ1 in fact harbors two activity bands, one of which is absent in the kstD mutant strain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Delta(1)-dehydrogenase isoenzyme.

Previously, Rhodococcus erythropolis SQ1 kstD, encoding ketosteroid Delta(1)-dehydrogenase (KSTD1) was characterized. Surprisingly, a kstD gene deletion mutant (strain RG1) grew normally on steroids. UV mutagenesis of strain RG1 allowed isolation of strains (e.g. strain RG1-UV29) unable to perform the Delta(1)-dehydrogenation of 4-androstene-3,17-dione (AD) and 9alpha-hydroxy-4-androstene-3,17-...

متن کامل

3-Keto-5α-steroid 1-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism

The Rhodococcus erythropolis SQ1 kstD3 gene was cloned, heterologously expressed and biochemically characterized as a KSTD3 (3-keto-5α-steroid -dehydrogenase). Upstream of kstD3, an ORF (open reading frame) with similarity to 4 KSTD (3-keto-5α-steroid -dehydrogenase) was found, tentatively designated kst4D. Biochemical analysis revealed that the 1 KSTD3 has a clear preference for 3-ketosteroids...

متن کامل

Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9alpha-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB.

Previously we have characterized 3-ketosteroid 9alpha-hydroxylase (KSH), a key enzyme in microbial steroid degradation in Rhodococcus erythropolis strain SQ1, as a two-component iron-sulfur monooxygenase, comprised of the terminal oxygenase component KshA1 and the oxygenase-reductase component KshB. Deletion of the kshA1 gene resulted in the loss of the ability of mutant strain RG2 to grow on t...

متن کامل

Purification, crystallization and preliminary X-ray crystallographic analysis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1.

3-Ketosteroid Δ(1)-dehydrogenase plays a crucial role in the early steps of steroid degradation by introducing a double bond between the C1 and C2 atoms of the A-ring of its 3-ketosteroid substrates. The 3-ketosteroid Δ(1)-dehydrogenase from Rhodococcus erythropolis SQ1, a 56 kDa flavoprotein, was crystallized using the sitting-drop vapour-diffusion method at room temperature. The crystals grew...

متن کامل

Functional differentiation of 3-ketosteroid Δ1-dehydrogenase isozymes in Rhodococcus ruber strain Chol-4

BACKGROUND The Rhodococcus ruber strain Chol-4 genome contains at least three putative 3-ketosteroid Δ1-dehydrogenase ORFs (kstD1, kstD2 and kstD3) that code for flavoenzymes involved in the steroid ring degradation. The aim of this work is the functional characterization of these enzymes prior to the developing of different biotechnological applications. RESULTS The three R. ruber KstD enzym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 66 5  شماره 

صفحات  -

تاریخ انتشار 2000